Assignment 6: Transistors

- 1. Consider a pnp BJT that has the following properties. The emitter region acceptor concentration is $2 \times 10^{18} \ cm^{-3}$, the base region donor concentration is $10^{16} \ cm^{-3}$, and the collector region acceptor concentration is $10^{16} \ cm^{-3}$. The hole drift mobility in the base is $400 \ cm^2 V^{-1} s^{-1}$, and the electron drift mobility in the emitter is $200 \ cm^2 V^{-1} s^{-1}$. The transistor emitter and base neutral widths are about $2 \ \mu m$ each under common base (CB) mode with normal operation. Device cross section is $0.02 \ mm^2$. Hole lifetime in the base is $400 \ ns$. Assume the emitter has 100% efficiency. Calculate the CB transfer ratio α and the current gain β . What is the emitter-base voltage if the emitter current is $1 \ mA$?
- 2. Consider an idealized Si npn BJT with the properties shown below. Assume uniform doping. The cross sectional area is $10^4 \ \mu m^2$. The base-emitter forward bias voltage is 0.6 V and the reverse bias base-collector voltage is 18 V.

Emitter	Emitter	Hole lifetime	Base	Base	Electron lifetime	Collector
width	doping	in emitter	width	doping	in base	doping
$10 \ \mu m$	$10^{18} \ cm^{-3}$	10 ns	$4 \ \mu m$	$10^{16} \ cm^{-3}$	400 ns	$10^{16} \ cm^{-3}$

- (a) Calculate the depletion layer width between collector-base and emitter-base. What is the width in the neutral base region?
- (b) Calculate α and hence β for this transistor. $\mu_e = 1250 \ cm^2 V^{-1} s^{-1}$ in the base, $\mu_h = 100 \ cm^2 V^{-1} s^{-1}$ in the collector.
- (c) What are the emitter, collector, and base currents? Take unity emitter injection efficiency for (b) and (c).
- 3. Consider the *n*-channel JFET, shown below in figure 1. The width of each depletion region extending into the n-channel is W. The channel depth (thickness) is 2a. For an abrupt pn junction and with $V_{DS} = 0$,

Figure 1: For problem 3. Schematic of a *n*-channel MOSFET. Adapted from *Principles of Electronic Materials - S.O. Kasap*

show that when the gate to source voltage is V_p , pinch-off occurs when

$$V_p = \frac{a^2 e N_D}{2\epsilon} - V_0$$

where V_0 is the built-in potential and N_D is the donor concentration of the channel. Calculate V_p when acceptor concentration is $10^{19} \ cm^{-3}$, $N_D = 10^{16} \ cm^{-3}$ and channel width (2a) is 2 μm .

- 4. Consider a *npn* Si MOSFET with $N_A = 10^{18} \ cm^{-3}$.
 - (a) Determine the position of E_{Fp} .
 - (b) Determine applied voltage needed to achieve strong inversion. Calculate depletion width and n-channel width at strong inversion.
 - (c) Determine depletion width when applied voltage is 0.5 V.
 - (d) Plot the energy bands as a function of distance, starting from the bulk and moving to the surface. The plot should also include the Fermi level.

Relation between surface potential, ϕ_s , and depletion width, w_D , is given by

$$\phi_s = \frac{eN_A w_D^2}{2\epsilon_0 \epsilon_r}$$