Assignment 6: Transistors

1. Consider a pnp BJT that has the following properties. The emitter region acceptor concentration is $2 \times 10^{18} \mathrm{~cm}^{-3}$, the base region donor concentration is $10^{16} \mathrm{~cm}^{-3}$, and the collector region acceptor concentration is $10^{16} \mathrm{~cm}^{-3}$. The hole drift mobility in the base is $400 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$, and the electron drift mobility in the emitter is $200 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$. The transistor emitter and base neutral widths are about $2 \mu \mathrm{~m}$ each under common base (CB) mode with normal operation. Device cross section is $0.02 \mathrm{~mm}^{2}$. Hole lifetime in the base is 400 ns . Assume the emitter has 100% efficiency. Calculate the CB transfer ratio α and the current gain β. What is the emitter-base voltage if the emitter current is 1 $m A$?
2. Consider an idealized Si npn BJT with the properties shown below. Assume uniform doping. The cross sectional area is $10^{4} \mu m^{2}$. The base-emitter forward bias voltage is 0.6 V and the reverse bias basecollector voltage is 18 V .

Emitter width	Emitter doping	Hole lifetime in emitter	Base width	Base doping	Electron lifetime in base	Collector doping
$10 \mu \mathrm{~m}$	$10^{18} \mathrm{~cm}^{-3}$	10 ns	$4 \mu \mathrm{~m}$	$10^{16} \mathrm{~cm}^{-3}$	400 ns	$10^{16} \mathrm{~cm}^{-3}$

(a) Calculate the depletion layer width between collector-base and emitter-base. What is the width in the neutral base region?
(b) Calculate α and hence β for this transistor. $\mu_{e}=1250 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$ in the base, $\mu_{h}=100 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$ in the collector.
(c) What are the emitter, collector, and base currents? Take unity emitter injection efficiency for (b) and (c).
3. Consider the n-channel JFET, shown below in figure 1. The width of each depletion region extending into the n-channel is W. The channel depth (thickness) is $2 a$. For an abrupt $p n$ junction and with $V_{D S}=0$,

Figure 1: For problem 3. Schematic of a n-channel MOSFET. Adapted from Principles of Electronic Materials - S.O. Kasap
show that when the gate to source voltage is V_{p}, pinch-off occurs when

$$
V_{p}=\frac{a^{2} e N_{D}}{2 \epsilon}-V_{0}
$$

where V_{0} is the built-in potential and N_{D} is the donor concentration of the channel. Calculate V_{p} when acceptor concentration is $10^{19} \mathrm{~cm}^{-3}$, $N_{D}=10^{16} \mathrm{~cm}^{-3}$ and channel width (2a) is $2 \mu \mathrm{~m}$.
4. Consider a $n p n$ Si MOSFET with $N_{A}=10^{18} \mathrm{~cm}^{-3}$.
(a) Determine the position of $E_{F p}$.
(b) Determine applied voltage needed to achieve strong inversion. Calculate depletion width and n-channel width at strong inversion.
(c) Determine depletion width when applied voltage is 0.5 V .
(d) Plot the energy bands as a function of distance, starting from the bulk and moving to the surface. The plot should also include the Fermi level.

Relation between surface potential, ϕ_{s}, and depletion width, w_{D}, is given by

$$
\phi_{s}=\frac{e N_{A} w_{D}^{2}}{2 \epsilon_{0} \epsilon_{r}}
$$

